# A novel energetic composite with a special sandwich microstructure: **RDX/expanded graphite intercalation composite**

Xian-Long Ma<sup>1</sup>, Shusen Chen<sup>1</sup>, Kun Chen<sup>1</sup>, Lijie Li<sup>1</sup>, Jing-Jing Zhao<sup>2</sup>, Xue-Bin Yang<sup>2</sup>, Fengqin Shang<sup>2</sup>, Xijuan Lv<sup>\*1</sup> and Qinghai Shu<sup>\*1</sup> <sup>1</sup> School of Materials Science & Engineering, Beijing Institute of Technology. Beijing 100081, PR China <sup>2</sup>Research Institute of Gansu Yinguang Chemical Industry Group, Baiyin, PR China. \* Corresponding author telephone: Tel: +86-10-68918535; Email: 7520180040@bit.edu.cn; qhshu121@bit.edu.cn

## Introduction

- A variety of carbon materials have been developed as carriers of EMs for higher performance.
- Considering that expanded graphite (EG) possesses such many outstanding properties, we employed the solvent/anti-solvent process to recrystallize RDX crystal into holes of EG.
- The advanced sandwich microstructure possessed two effects: (i) ullethigh heat conduction and (ii) hot spots isolation of the carbon microstructure, which were the key to improve thermal stability and decreasing sensitivity.





#### **Preparation of RDX/EG intercalation composite**

1) Preparing RDX solution with different concentrations; 2) Adding EG into the solution and soaking to fully wetted; 3) Filtering out the EG absorbing the RDX solution fully from the suspension and pouring the filter residue into deionized water rapidly following the agitation for 5 min;

4) Filtering out the production and washing the sample with deionized water to remove the remaining RDX outside EG;

5) Drying samples at 60°C to the constant weight.



**Figure 1. Procedures for the formation of RDX/EG intercalation** composites

Figure 5. (a) IR spectroscopies; (b) The XPS general spectroscopy and the C1s, O1s, P2p spectroscopies (in the inserts) of EG; (c) Normalized Raman spectroscopies; (d) XRD patterns

**Explosive properties** 

### Sandwich microstructure

Effect of volume ratio of solvent to anti-solvent on intercalation



Figure 2. SEM images of RDX/EG intercalation composites prepared under different volume ratio of solvent to anti-solvent conditions: (a, b) 1:2; (c, d) 1:6; (e, f) 1:10; (g, h) 1:20

Effect of concentration of RDX solution on intercalation





Figure 6. DSC curves of (a) the RDX/EG intercalation composite and (b) raw RDX at different heating rates. Kissinger plots of  $\ln(\beta/T_{\rm P}^2)$  versus  $1/T_{\rm P}$  were shown in the inserts

Table 1. Kinetics, thermodynamics and thermal stabilities parameters of raw RDX and the maximum intercalated **RDX/EG composite (run 9) derived from their DSC curves** 

|         | P                              | Ta                | Kinetics                |                    |                    | Thermodynamics          |                         |                                         | Thermal stabilities |
|---------|--------------------------------|-------------------|-------------------------|--------------------|--------------------|-------------------------|-------------------------|-----------------------------------------|---------------------|
| Samples | $\beta$ (K·min <sup>-1</sup> ) | <i>T</i> ₽<br>(℃) | $E_{\mathrm{K}}$        | lgA <sub>K</sub>   | k                  | $\Delta H^{\neq}$       | $\Delta G^{\neq}$       | $\Delta S^{\neq}$                       | Tb                  |
|         |                                |                   | (kJ·mol <sup>-1</sup> ) | (s <sup>-1</sup> ) | (s <sup>-1</sup> ) | (kJ·mol <sup>-1</sup> ) | (kJ·mol <sup>-1</sup> ) | (J·mol <sup>-1</sup> ·K <sup>-1</sup> ) | (°C)                |
|         | 1                              | 222.86            |                         |                    | 0.10               |                         |                         |                                         |                     |
| Run 9   | 2                              | 229.46            | 201.43                  | 20.21              | 0.19               | 197.21                  | 131.61                  | 129.24                                  | 224.09              |
|         | 5                              | 239.14            |                         |                    | 0.47               |                         |                         |                                         |                     |
|         | 10                             | 246.22            |                         |                    | 0.89               |                         |                         |                                         |                     |
|         | 1                              | 215.76            |                         |                    | 0.08               |                         |                         |                                         |                     |



Figure 3. SEM images of RDX/EG intercalation composites prepared under different RDX solution concentration conditions: (a, b) 0.10 mol·L<sup>-1</sup>; (c, d) 0.90 mol·L<sup>-1</sup>; (e, f) saturation.

| Raw RDX | 2  | 223.84 | 168.06 | 16.88 | 0.16 | 163.88 | 130.94 | 65.56 | 216.44 |
|---------|----|--------|--------|-------|------|--------|--------|-------|--------|
|         | 5  | 235.01 | 108.00 |       | 0.40 | 105.00 |        |       | 210.44 |
|         | 10 | 243.03 |        |       | 0.74 |        |        |       |        |

#### Table 2. Impact and friction sensitivities of raw RDX and **RDX/EG intercalation composites**

| Run        | Concentration of RDX<br>solution (mol·L <sup>-1</sup> ) | Volume ratio of<br>solvent to anti-<br>solvent | Weight fraction of RDX in<br>composites (%, Sample-Weight<br>Method) | Impact<br>sensitivities<br>H50 (cm) | Friction<br>sensitivities<br>P (%) |
|------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|------------------------------------|
| Raw<br>RD2 | -                                                       | -                                              | -                                                                    | 10.80                               | 72                                 |
| 5          | 0.9                                                     | 1:6                                            | 74.92                                                                | 28.40                               | 20                                 |
| 9          | 1.59 (saturation)                                       | 1:6                                            | 84.26                                                                | 27.10                               | 24                                 |

# Conclusions

The advanced half-coated parallel multi-sandwiches microstructure possessed two effects: (i) heat conduction and (ii) hot spots isolation, which were the key to higher performance.

