

Development of the analytic relations for the propellant grain geometrical characteristics required for a maximum pressure plateau feature

Rotariu Adrian- Nicolae, Liviu Matache, Florina Bucur, Marius Cirmaci, Trana Eugen

Military Technical Academy, George Cosbuc 39-49, Bucharest, Romania, adrian.rotariu@mta.ro

Fundamental relations used in the interior ballistic calculus

- The interior ballistic fundamental equation
- The burning rate law
- The propellant gases rate generation law
- The influence of grain geometry on the gases rate generation
- The projectile translation equation

 $pW = f\omega\psi - \frac{(\gamma-1)\varphi qv^2}{2}$

$$u = Ap^{\nu}$$

$$\psi = \chi z (1 + \lambda z + \mu z^2)$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \frac{S_0}{\Lambda_0} \frac{S}{S_0} A p^{\nu}$$

$$sp = \varphi q \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$W = W_0 - \frac{\omega}{\delta} (1 - \psi) - \alpha \omega \psi + sl$$

$$\psi = \frac{\omega_{ars}}{\omega} \qquad z = \frac{e}{e_1}$$

$$\sigma = 1 + 2\lambda z + 3\mu z^2$$

$$\frac{S_0}{\Lambda_0}e_1 = \chi$$

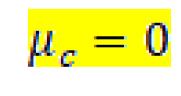
$$\varphi = 1.04 + \frac{1}{3}\frac{\omega}{q}$$

Deduction of the geometrical characteristics required for a constant pressure plateau

The constant pressure plateau implies:

- a null time derivative for the pressure,
$$\frac{v}{\sigma} = \frac{\omega \frac{S_0}{A_0} A p_{max}^{\nu}}{s(1+\theta) p_{max}} \Big[f + p_{max} \left(\alpha - \frac{1}{\delta} \right) \Big] = cst. \longrightarrow \frac{v_{p_{max}}}{1 + 2\lambda_c z_{p_{max}} + 3\mu_c z_{p_{max}}^2} = \frac{v_k}{1 + 2\lambda_c + 3\mu_c}$$

- a linear evolution of velocity in time,


$$v_k = v_{p_{max}} + \frac{sp_{max}}{\varphi q} \Delta t$$

- and a constant burning rate.

$$e_1(1-z_{p_{max}}) = \Delta t A p_{max}^{\nu}$$

$$\chi_c = 1 - \frac{\gamma}{2\varphi q} \frac{e_1^2}{\omega} \left(\frac{sp_{max}^{-1-\nu}}{A} \right)^2 \left[f + p_{max} \left(\alpha - \frac{1}{\delta} \right) \right]^{-1}$$

$$\lambda_{\mathrm{c}} = \frac{\frac{\gamma}{2\varphi q} \frac{\mathrm{e}_{1}^{2}}{\omega} \left(\frac{s p_{max}^{-1-\nu}}{A}\right)^{2} \left[f + p_{max} \left(\alpha - \frac{1}{\delta}\right)\right]^{-1}}{1 - \frac{\gamma}{2\varphi q} \frac{\mathrm{e}_{1}^{2}}{\omega} \left(\frac{s p_{max}^{-1-\nu}}{A}\right)^{2} \left[f + p_{max} \left(\alpha - \frac{1}{\delta}\right)\right]^{-1}}$$

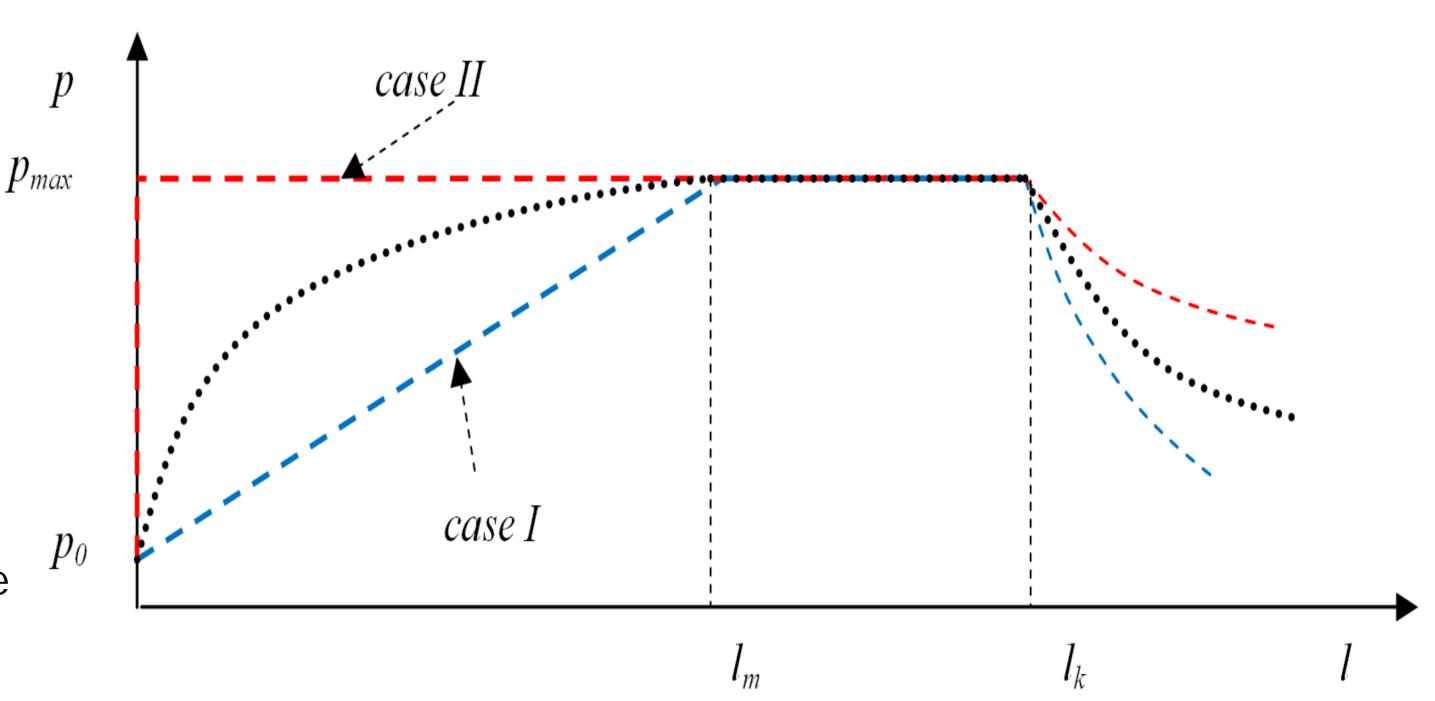

Case study for an realistic gun

Table 1. Gun, projectile and propellant characteristics

Gun/projectile characteristics				Propellant characteristics				
W_0 [m ³]	<i>S</i> [m ²]	φq [kg]	р _о [Ра]	δ [kg/m ³]	f [J/kg]	α [m ³ /kg]	A [m/s/Pa ^v]	ν [N/A]
$1.391 \cdot 10^{-3}$	$4.35 \cdot 10^{-3}$	6.677	5*10 ⁷	1650	935000	10-3	1.1.10-7	0.724

Extreme Case I - the minimum values are given when the pressure increases in a linear manner

Extreme Case II - the maximum values are given when the pressure suffers a sudden increase from right at the beginning of the movement and then remain constant

For the analysed gun system, there is not possible to reach a constant pressure plateau when is used a propellant characterised by a single set of geometrical characteristics over the entire web thickness

Conclusions

Analytic functions for the geometrical characteristics required for a constant pressure plateau were deduced

There is not possible to reach a constant pressure plateau when in a realistic gun system with a propellant charge characterised by a single set of geometrical characteristics over the entire web thickness

A start point in the development of some similar formulas and methods that deal with more complicated grains geometries as such those obtained through co-extrusion or 3D printing, for which the constant maximum pressure plateau is feasible