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1. Introduction 
High-power thyristor is widely adopted as a power switching device in PPS [1]-[3]. Compared with other similar switching devices, high-power thyristors have a relatively lower-cost in applications of high voltage and current. However, trigger pulses of high-power thyristors must be with high accuracy in PPS, which directly affects the 

performance of PPS. 

The trigger pulse of high-power thyristors is one of the key factors affecting the reliability of a PPS. If the trigger pulse of high-power thyristors is abnormal, PPS will also be abnormal. The trigger pulse of high-power thyristors can affect its accuracy that is closely related to triggering consistency of high-power thyristors and the accuracy of 

the high-power output pulse of PPS.  
Plenty of pulse transformers and SMFETs applied in trigger circuit of high-power thyristors can generate voltage change rate du/dt and current change rate di/dt, which can result in electromagnetic conducted interference (EMCI) problems [4]-[6]. Generally, the trigger pulse is sensitive to EMCI in trigger circuit of high-power thyristors.EMCI 

is usually divided into common-mode conducted interference (CMCI) and differential-mode conducted interference (DMCI).To improve the reliability of PPS, this paper aims to discuss DMCI in a trigger circuit of high-power thyristors and find some effective methods to suppress it. To verify the theoretical analysis, the peak (PK) spectrums of 

DMCI are measured in the frequency range of 10kHz-10MHz.  

2. Principle of DMCI in trigger circuit of high-power thyristors 
2.1. Principle of trigger circuit of high-power thyristors  

The principle of a trigger circuit of high-power thyristors is shown in Figure 1. Figure 1(a) is the schematic diagram of a trigger circuit of high-power thyristors and Figure 1(b) is the circuit principle of a one-stage trigger circuit of high-power thyristors. The trigger circuit of high-power thyristors is mainly composed of powerful trigger units, 

MCU control units, and remote control computer units. The powerful trigger units are mainly composed of a DC power source module and powerful trigger pulse forming modules (PFMs). The DC power source module usually applies the principle of switching power supply (SPS) to convert the AC power source from an uninterruptible power 

supply (UPS ) into a DC power source. A power trigger PFM mainly is composed of a SMFET and a pulse transformer. The trigger circuit of high-power thyristors can be divided into one-stage trigger circuit of high-power thyristors, two-stage trigger circuit of high-power thyristors,…, and N-stage trigger circuit of high-power thyristors according 
to the number of powerful trigger units. 
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Figure 1. Principle of a trigger circuit of high-power thyristors. (a) Schematic diagram of a trigger circuit of high-power thyristors. (b) Circuit principle of a one-stage trigger circuit of high-power thyristors. 

2.2. High-frequency parasitic parameters of key components  
2.2.1. High-frequency parasitic parameters of a pulse transformer 

In a powerful trigger unit, the high-frequency parasitic parameter of a pulse transformer can worsen DMCI [7]-[10]. The distributed parasitic capacitance model of a pulse transformer is shown in Figure 2(a). The lumped parasitic parameter model of a pulse transformer is shown in Figure 2(b). 
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Figure 2. High-frequency parasitic parameter models of a pulse transformer. (a) Distributed parasitic capacitance model of a pulse transformer. (b) Lumped parasitic parameter model of a pulse transformer. 

2.2.2. High-frequency parasitic parameters of SMFET 

A SMFET has three pins: drain, source, and gate. There is a parasitic capacitance at the PN junction of every two pins. Figure 3 shows the equivalent parasitic parameter model of a SMFET. LD is the high-frequency parasitic inductance at the drain, LS is the high-frequency parasitic inductance at the source, RG is the equivalent resistance of the 

gate, CDG is the high-frequency parasitic capacitance between the drain and the gate, CGS is the high-frequency parasitic capacitance between the gate and the source, and CDS is the high-frequency parasitic capacitance between the drain and the source [13]-[14]. 

D

S

G

CDG

CGS

CDS

iDS(t)RG

LD

LS

 
Figure 3. Equivalent circuit model of the high-frequency parasitics of a SMFET. 

2.3. Principle of the DMCI in trigger circuits of high-power thyristors 

To meet the requirements of volume limitation, several trigger circuit units usually share a DC power source forming a multi-stage trigger circuit of high-power thyristors, which can inevitably worsen DMCI. Based on the parasitic parameter models of the pulse transformer and SMFET, Figure 4 shows the principle of DMCI in the trigger 

circuit of high-power thyristors. 
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Figure 4. Principle of DMCI in the trigger circuit of high-power thyristors. (a) Simplified circuit model of DMCI in the three-stage trigger circuit. (b) Extended circuit model of DMCI in an N-stage trigger circuit of high-power thyristors. 
2.4. Suppressive methods of DMCI in trigger circuit of high-power thyristors 

Generally, implanting an EMI filter at the power input port of a trigger circuit of high-power thyristors can effectively suppress DMCI. The principle of a one-stage EMI filter is shown in Figure 5. 
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Figure 5. Principle of a one-stage EMI filter. (a) Circuit model of the EMI filter. (b) Equivalent DMCI circuit model of the EMI filter. 

3. Experimental results 

Figure 6 shows the measured PK spectrums of DMCI in a one-stage trigger circuit of high-power thyristors (ft=50KHz, 100kHz, and 150kHz, respectively; load resistance Rload=1kΩ). Figure 6 illustrates that in the frequency range of 10kHz-10MHz, with the increase of trigger frequency, PK values of the DMCI spectrums also increase, 

indicating that the DMCI becomes heavier with the increase of trigger frequency. 

Figure 7 shows the measured PK spectrums of DMCI in trigger circuits of high-power thyristors when several different EMI filtering components are added at the power input port (ft=50KHz, Rload=1kΩ). Figure 7 displays that the leakage inductance of CM choke can be used to suppress DMCI if DMCI is relatively minor in a trigger circuit 
of high-power thyristors; DM capacitors and DM inductors can be implanted in an EMI filter if DMCI is relatively heavy in a trigger circuit of high-power thyristors. 
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Figure 6. Measured PK spectrums of DMCI in a one-stage trigger circuit of high-power thyristors (ft=50KHz, 100kHz, and 150kHz, respectively; Rload=1kΩ). 
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Figure 9. Measured PK spectrums of DMCI in trigger circuits of high-power thyristors when several different EMI filtering components are implanted at the power input port (ft=50KHz, Rload=1kΩ). (a) Measured PK spectrums of DMCI in a one-stage trigger circuit of high-power thyristors with/without a CM 

choke (L=3.1mH) at the power input port. (b) Measured PK spectrums of DMCI in a one-stage trigger circuit of high-power thyristors with/without DM capacitors (Cdm1=1μF, Cdm2=100 nF)at the power input port. (c) Measured PK spectrums of DMCI in a one-stage trigger circuit of high-power thyristors with DM 
capacitors (Cdm1=1μF, Cdm2=100 nF) at the power input port and in a two-stage trigger circuit of high-power thyristors with a one-stage EMI filter (L=3.1mH, Cdm1=1μF, and Cdm2=100 nF ) at the power input port. (d) Measured PK spectrums of DMCI in a two-stage/three-stage trigger circuit of high-power thyristors 

with a one-stage EMI filter (L=3.1mH, Cdm1=1μF, and Cdm2=100 nF ) at the power input port. 

 

4. Conclusion 
To improve the reliability of PPS, the DMCI in the trigger circuit of high-power thyristors is investigated based on the following aspects: high-frequency parasitic parameters of key devices; the principle of DMCI in the trigger circuits of high-power thyristors; suppression methods of DMCI. According to the theoretical analysis and experimental 

results, EMI filtering components( DM capacitor/inductor, CM choke, EMI filter and so on) can effectively suppress DMCI. Besides, limiting high-frequency parasitic parameters of key devices is also an effective way to suppress DMCI.  
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