Prediction of creep performance during long-term storage of composite directors based on nonlinear viscoelasticity

Tongsheng Sun
School of Mechanical Engineering - Nanjing University of Science and Technology

Introduction

- In order to further improve the mobility and rapid response capability of MLRS and achieve the goal of "multi-skill and multi-purpose", a modular launch canister, clustering of E-glass fiber/epoxy composite(GFRP) directors, is generally equipped[1].
- Polymeric composites are known to exhibit a time-dependent behavior due to the viscoelastic properties of the polymers, and there is a stress threshold beyond which the polymer and polymeric composites exhibit nonlinear viscoelastic characteristics[2].
- GFRP directors undergoes creep deformation during 15 years stacking storage. Deformation of the director has a negative impact on launch safety and firing dispersion.

Objectives

- The Nonlinear viscoelasticity of unidirectional E-glass/epoxy 6509 composite.
 - Experimental characterization
 - Numerical simulation
- Predict the long-term storage creep response of GFRP directors.

Experimental

- The 60/60-minute creep/creep-recovery tests were carried out for [90]$_{16}$ and [±45]$_{45}$ specimens at room temperature.
- The recorded strain data has seven stress levels for [90]$_{16}$ specimens ranging from 17MPa to 35MPa, and eight stress levels for [±45]$_{45}$ specimens from 9MPa to 30MPa.
- Schapery’s Nonlinear parameters[3]

Numerical simulation

- The stacking sequence of GFRP director is [90/(±53.7)/90].
- A UMAT in the Fortran code was implemented to define the nonlinear viscoelastic properties of the GFRP director.
- The total step time for the creep model was 15 years.

Results

- Fig.3 Residual creep deformation of director bundle after 15 years storage
- Fig.4 Saddle-shaped distribution in three-dimensional space of the maximum creep deformation for all 20 directors

Conclusion

- After 15 years of stacking storage, the maximum residual deformation of all GFRP directors presents a saddle-shaped distribution in three-dimensional space.
- The two directors in the middle of the upper and lower rows show a maximum residual deformation of 0.24 mm, and the two directors in the middle of the left and right columns show a minimum residual deformation of 0.22 mm.

References

Fig.1 Multiple launch rocket system (MLRS)

Fig.2 Schapery’s nonlinear parameters as a functions of the applied stress and the average matrix octahedral shear stress